14 research outputs found

    Optimization of Humanoid Robot Designs for Human-Robot Ergonomic Payload Lifting

    Full text link
    When a human and a humanoid robot collaborate physically, ergonomics is a key factor to consider. Assuming a given humanoid robot, several control architectures exist nowadays to address ergonomic physical human-robot collaboration. This paper takes one step further by considering robot hardware parameters as optimization variables in the problem of collaborative payload lifting. The variables that parametrize robot's kinematics and dynamics ensure their physical consistency, and the human model is considered in the optimization problem. By leveraging the proposed modelling framework, the ergonomy of the interaction is maximized, here given by the agents' energy expenditure. Robot kinematic, dynamics, hardware constraints and human geometries are considered when solving the associated optimization problem. The proposed methodology is used to identify optimum hardware parameters for the design of the ergoCub robot, a humanoid possessing a degree of embodied intelligence for ergonomic interaction with humans. For the optimization problem, the starting point is the iCub humanoid robot. The obtained robot design reaches loads at heights in the range of 0.8-1.5 m with respect to the iCub robot whose range is limited to 0.8-1.2 m. The robot energy expenditure is decreased by about 33%, meanwhile, the human ergonomy is preserved, leading overall to an improved interaction.Comment: Accepted to 2022 IEEE-RAS International Conference on Humanoid Robotics (Humanoids

    ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer

    No full text
    ALK, ROS1, and NTRK fusions occur in 0.2% to 2.4% of colorectal cancers. Pioneer cases of metastatic colorectal cancer (mCRC) patients bearing rearrangements who benefited from anti-ALK, ROS, and TrkA-B-C therapies have been reported previously. Here we aimed at characterizing the clinical and molecular landscape of ALK, ROS1, and NTRK rearranged mCRC

    Benefit from upfront FOLFOXIRI and bevacizumab in BRAFV600E-mutated metastatic colorectal cancer patients: does primary tumour location matter?

    No full text
    Background Recent data suggest that BRAFV600E-mutated metastatic colorectal cancer (mCRC) patients with right-sided tumours and ECOG-PS = 0 may achieve benefit from the triplet regimen differently than those with left-sided tumours and ECOG-PS > 0. Methods The predictive impact of primary sidedness and ECOG-PS was evaluated in a large real-life dataset of 296 BRAFV600E-mutated mCRC patients treated with upfront triplet or doublet +/- bevacizumab. Biological differences between right- and left-sided BRAFV600E-mutated CRCs were further investigated in an independent cohort of 1162 samples. Results A significant interaction effect between primary sidedness and treatment intensity was reported in terms of both PFS (p = 0.010) and OS (p = 0.003), with a beneficial effect of the triplet in the right-sided group and a possible detrimental effect in the left-sided. No interaction effect was observed between ECOG-PS and chemo-backbone. In the MSS/pMMR population, a consistent trend for a side-related subgroup effect was observed when FOLFOXIRI +/- bevacizumab was compared to oxaliplatin-based doublets +/- bevacizumab (p = 0.097 and 0.16 for PFS and OS, respectively). Among MSS/pMMR tumours, the BM1 subtype was more prevalent in the right-sided group (p = 0.0019, q = 0.0139). No significant differences were observed according to sidedness in the MSI-H/dMMR population. Conclusions Real-life data support the use of FOLFOXIRI +/- bevacizumab only in BRAFV600E-mutated mCRC patients with right-sided tumours

    Targeting the DNA Damage Response Pathways and Replication Stress in Colorectal Cancer.

    No full text
    PURPOSE: Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN: We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS: We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS: In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi

    Werner Helicase Is a Synthetic-Lethal Vulnerability in Mismatch Repair–Deficient Colorectal Cancer Refractory to Targeted Therapies, Chemotherapy, and Immunotherapy

    Get PDF
    Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair–deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. Significance: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy
    corecore